高校数学A
5分で解ける!順列とは?に関する問題
- ポイント
- 例題
- 練習
この動画の問題と解説
練習
一緒に解いてみよう
解説
これでわかる!
練習の解説授業
数字が1つずつ減っていくかけ算
1,2,3,4,5,6の6個の数字から異なる3個を選んで3ケタの整数をつくるんだね。
具体的には、123とか、246、563、といった感じで数をつくるわけだ。これを全部数えようとしたらとても大変だけれど、実は 順列として計算できる ことに気づくかな。
「3ケタの整数をつくる」は「『百の位』、『十の位』、『一の位』に1つずつ並べる」と言い換えられる ね。
樹形図をイメージしながら考えよう。
百の位に並ぶ のは、1,2,3,4,5,6の 6通り あるね。 十の位に並ぶ のは、残っている5個の数字から1個を選んで 5通り 。さらに、 一の位に並ぶ のは、残っている4個の数字から1個を選んで 4通り 。
つまり、
6×5×4=120(通り)
だとわかるよね!
順列の場合の数は、 数字が1つずつ減っていくかけ算になる ことをおさえておこう!
6個の数字から3個を選んで3ケタの整数をつくる場合の数を求めよう。 「3ケタの整数をつくる」は「3個の数字を1列に並べる」と言い換えられる ね。 順番に1列に並べる 順列は、 カウントダウンのかけ算 で計算していくよ。