高校数学A
5分で解ける!「順列」の確率2【応用】に関する問題
- ポイント
- 例題
- 練習
この動画の問題と解説
例題
一緒に解いてみよう
解説
これでわかる!
例題の解説授業
「交互に並べる」ときの順列は?
確率は 「(それが起こる場合)/(全体)」 で求めるんだよ! この問題で、 分母の「全体」は、「男女7人を1列に並べる順列」 だね。 分子の「それが起こる場合」というのは、「男女が交互に並ぶ順列」 となる。
「異なる7人を1列に並べる」 ときは、 7P7=7!(通り) だね。
このうち 「男女が交互になる」 のはどう求める?
(女)(男)(女)(男)(女)(男)(女)
と並び方は決まっているね。 (女)の部分4か所と(男)の部分3か所に入る人をそれぞれ決めてやればいい から、 4!×3! で求められるね。
したがって、求める確率は4!×3!/7!を計算すればOKだよ。
「男女7人を1列に並べる」問題だね。 「異なるn人を1列に並べる」場合の数は、順列を使って数え上げよう。 数え上げた場合の数を次のポイントの確率の公式にあてはめれば、答えが出てくるよね。