高校数学A

高校数学A
5分で解ける!条件つき確率に関する問題

58

5分で解ける!条件つき確率に関する問題

58

子どもの勉強から大人の学び直しまで
ハイクオリティーな授業が見放題

カンタン登録1分

この動画の問題と解説

例題

一緒に解いてみよう

高校数学A 場合の数と確率50 例題

解説

これでわかる!
例題の解説授業
lecturer_avatar

1回目に取り出した玉が赤玉だとわかっているとき、2回目に取り出す玉が黄玉となる確率を求める問題だね。1回目に取り出した玉が赤玉だとわかっているので、ある事象が起こったことがわかっているときの確率。そう条件つき確率を求めよう。

POINT
高校数学A 場合の数と確率50 ポイント

赤玉1個を取り出したあとを「全体」と考える

高校数学A 場合の数と確率50 例題

lecturer_avatar

この問題では、赤玉1個を取り出したあとの「全体の場合の数」と「黄玉を取り出す場合の数」を考えよう。5個の玉が入った袋から1個の赤玉を取り出して戻さないので、残っている玉は4個だね。求める確率は、2回目に赤1個、黄3個が入った袋から黄玉1個を取り出す確率だから、3/4が答えになるね。

答え
高校数学A 場合の数と確率50 例題の答え

答えが「3/10」でない理由

lecturer_avatar

ちなみに、ここで求める確率を
(2/5)×(3/4)=3/10
としてしまった人はいないかな?これは非常に惜しい間違いなんだ。

lecturer_avatar

確かに、1回目に赤玉を引く確率は2/5、そのあとの2回目に黄玉を引く確率は3/4だから、
(2/5)×(3/4)=3/10
としたくなるよね? でも、ここでは「1回目に赤球を引いたことがわかっている状態の確率」を求めるのだから、はじめの1/5のかけ算の部分が余計になるんだ。

lecturer_avatar

(2/5)×(3/4)という計算を使う場合には、{(2/5)×(3/4)}/(2/5)=3/4として求めなければならないよ。これは 「Aが起こったときのBの条件つき確率」=(事象Aかつ事象Bが起こる確率)/(事象Aが起こる確率) という式により求める計算になるんだ。この確率を使った条件つき確率の求め方もとても大事なんだけど、ここではまず、場合の数を使った条件つき確率の求め方、つまりある事象が起こったことがわかったあとを全体ととらえる条件つき確率の求め方をマスターしよう。

条件つき確率
58
友達にシェアしよう!
  • 学校で使っている教科書にあわせて勉強できる

      会員登録をクリックまたはタップすると、利用規約・プライバシーポリシーに同意したものとみなします。
      ご利用のメールサービスで @try-it.jp からのメールの受信を許可して下さい。詳しくは
      こちらをご覧ください。

      場合の数と確率の問題

      高校数学Aの問題

      この授業のポイント・問題を確認しよう

      場合の数と確率

          会員登録をクリックまたはタップすると、利用規約・プライバシーポリシーに同意したものとみなします。
          ご利用のメールサービスで @try-it.jp からのメールの受信を許可して下さい。詳しくは
          こちらをご覧ください。

          確率

              会員登録をクリックまたはタップすると、利用規約・プライバシーポリシーに同意したものとみなします。
              ご利用のメールサービスで @try-it.jp からのメールの受信を許可して下さい。詳しくは
              こちらをご覧ください。

              高校数学A