高校数学A
5分で解ける!「互いに素」を使う証明問題に関する問題
- ポイント
- 例題
- 練習
この動画の問題と解説
練習
一緒に解いてみよう
解説
これでわかる!
練習の解説授業
「n+1が4の倍数」を数式にすると……
n+1が4の倍数 ➔ n+1=4k (kは自然数)
n+2が3の倍数 ➔ n+2=3ℓ (ℓは自然数)
と、数式で表すことができるね。
与えられた仮定(ヒント)から数式を起こすのが、証明問題のスタート地点だよ。
「n+5」の式変形を進める
「n+5が12の倍数」 が言えるように式変形していこう。
「4と3は互いに素」 であることを活用すると、 「k+1が3の倍数」 であることが言えるね。したがって、 n+5=4(k+1)は12の倍数 といえるね。
「結論」を書く!
証明問題は、計算しただけでは不十分。結論に導けることを、しっかり言葉で説明する必要があるよ。 「4と3は互いに素」 であることを活用すると、 「k+1が3の倍数」 であることが言えるね。したがって、 n+5=4(k+1)は12の倍数 といえるね。
「n+1が4の倍数」「n+2が3の倍数」という2つのヒントを利用して、「n+5が12の倍数」であることを証明する問題だね。