高校数学A

高校数学A
5分で解ける!角の二等分線と比の利用に関する問題

16

5分で解ける!角の二等分線と比の利用に関する問題

16

子どもの勉強から大人の学び直しまで
ハイクオリティーな授業が見放題

カンタン登録1分

この動画の問題と解説

例題

一緒に解いてみよう

高校数学A 図形の性質7 例題

解説

これでわかる!
例題の解説授業
lecturer_avatar

図形の証明問題だね。大きなヒントになっているのが、 点MはBCの中点 だという部分と、 ∠AMB、∠AMCの二等分線 という部分だ。 内角の二等分線 については、次のポイントがカギになるよ。

POINT
高校数学A 図形の性質7 ポイント

「平行」はどう証明すればよいか?

高校数学A 図形の性質7 例題

lecturer_avatar

証明問題では、まずゴール(結論)を見て、解答の筋道を立てよう。証明のゴールは、 「PQ//BC」 だよね。

lecturer_avatar

では、 2直線の平行 を、どう証明すればいいだろう。パッと思いつくのは、 同位角 または 錯角 が等しいことがいえれば、その 2直線は平行 だよ。ただ、問題の図を眺めてみても、同位角などの 手がかりは全然ない んだよね。

「線分比」から「平行」を証明!

lecturer_avatar

「平行」を示すには、もう1つ別の方法があったことを思い出してほしい。次のポイントのように、 線分比からも平行を示すことができた よね。

POINT
高校数学A 図形の性質4 ポイント
lecturer_avatar

上の図のように、 線分比「(上):(下)=[上]:[下]」 なら、 2直線は平行 になるんだったね。この方向から証明はできないだろうかと、改めて図を眺めてみよう。 AP:PB=AQ:QC がいえれば、 PQ//BC がいえるね。

高校数学A 図形の性質7 図のみ

lecturer_avatar

すると、△AMBと△AMCにおいて、 内角の二等分線と線分比の関係 を使えば、 AP:PBとAQ:QCの線分比 がわかるんじゃないかな?具体的には、
△AMBにおいて、AP:PB= AM:BM
△AMCにおいて、AQ:QC= AM:CM
MはBCの中点 だから、 BM=CM なので、 AP:PB=AQ:QCより、PQ//BC がいえるようになるね。

証明を書いていこう

lecturer_avatar

証明の筋道が見えたら、実際に証明を書いていこう。
まずは△AMBと、△AMCにおいて、 内角の二等分線と線分比 の関係を使い、 AP:PBとAQ:QCの線分比 を言い換えるんだ。

高校数学A 図形の性質7 例題の答え 証明の途中 6行目まで
lecturer_avatar

そして、 点MがBCの中点 であることから AP:PB=AQ:QC を導こう。

高校数学A 図形の性質7 例題の答え 証明の途中 7行目から8行目まで
lecturer_avatar

これにより、平行線と線分比の関係から、最終的な結論(ゴール)、 PQ//BC を導くことができるよ。

答え
高校数学A 図形の性質7 例題の答え 全部
角の二等分線と比の利用
16
友達にシェアしよう!
  • 学校で使っている教科書にあわせて勉強できる

      会員登録をクリックまたはタップすると、利用規約・プライバシーポリシーに同意したものとみなします。
      ご利用のメールサービスで @try-it.jp からのメールの受信を許可して下さい。詳しくは
      こちらをご覧ください。

      この授業のポイント・問題を確認しよう

      図形の性質

          会員登録をクリックまたはタップすると、利用規約・プライバシーポリシーに同意したものとみなします。
          ご利用のメールサービスで @try-it.jp からのメールの受信を許可して下さい。詳しくは
          こちらをご覧ください。

          線分と比

              会員登録をクリックまたはタップすると、利用規約・プライバシーポリシーに同意したものとみなします。
              ご利用のメールサービスで @try-it.jp からのメールの受信を許可して下さい。詳しくは
              こちらをご覧ください。

              高校数学A