高校数学A
5分で解ける!メネラウスの定理2【応用】に関する問題
- ポイント
- 例題
- 練習
この動画の問題と解説
練習
一緒に解いてみよう
解説
これでわかる!
練習の解説授業
「面積比」は「底辺と高さ」に注目
三角形の面積比 は、 底辺 と 高さ に注目するのが重要だったね。ここで、「あっ」と気付くことができるかな? △OBCと△ABCは、 底辺BCが共通 しているよね。高さの比は OP:AP と等しいよね。
まずAO:OPを求めよう!
では、 OP:AP をどうやって求めようか。AQ:QBとBP:PCの比がわかっていることから、チェバの定理やメネラウスの定理が使えそうだ。
ここでは、 △ABPを直線QCが貫いている とみて、 メネラウスの定理 を使おう。すると、AO:OPを次のように求めることができるね。
「AP=AO+OP」から比を求める
AO:OP=10:3とわかったね。ここで、AP=AO+OPより、
OP:AP=3:(3+10)=3:13
△OBCと△ABCは、 底辺BCが共通 しているから、 OP:APの比と等しい3:13になる わけだね。
三角形の面積比に関する問題だね。この問題は、まずAO:OPの線分比を メネラウスの定理 で求めるのがポイントだよ。