高校数学A
5分で解ける!円周角と中心角のおさらいに関する問題
- ポイント
- 例題
- 練習
この動画の問題と解説
例題
一緒に解いてみよう
解説
これでわかる!
例題の解説授業
直径に対する円周角は90°
∠CBDをつくっている 弧CDに注目 しよう。 同じ弧に対する円周角は等しい から、 ∠CBD=∠CAD=α だよ。このようにして、求めたい角度と等しい角度を探していくと、答えに近づけるんだ。
ここで、 弧BDが直径 になっていることに気付くかな? 直径に対する中心角は180°だよね。したがって、 直径に対する円周角は、180°の半分の90°になる ね。つまり、 α+40°=90° だから、αの値を求めることができるよ。
直径に対する円周角は90° という知識はとても重要なので必ず覚えておこう。
三角形の外角の性質を利用
∠BDCをつくっている 弧BCに注目 しよう。 同じ弧に対する円周角は等しい から、 ∠BDC=∠BAC=50° だよ。
αを含む三角形に、50°という角度がうつったね。ここで、 三角形の外角は、他の2つの内角の和と等しい という性質を思い出そう。 α+50°=95° という式をつくることができるね。
円Oにおける円周角を求める問題だね。次のポイントを活用して解いていこう。