高校数学A
5分で解ける!オイラーの多面体定理に関する問題
- ポイント
- 例題
- 練習
この動画の問題と解説
練習
一緒に解いてみよう
解説
これでわかる!
練習の解説授業
「(頂点)-(辺)+(面)=2」!
必要なのは、 「面の数」 と 「頂点の数」 だね。
「面の数」は 12 だよ。また、1つの面は正五角形で、頂点は5つあるよね。そして、面の数は12だから、5×12÷3= 20 が頂点の数だよ。3で割っているのは、 1つの頂点 につき、 3つの面 がくっついているのが見て取れるよね。どの頂点を見ても、1つの頂点に3つの面がくっついているから、ダブって数えた部分を整理するために、3で割るんだ。
あとは、 「オイラーの定理」 に当てはめると、次のように辺の数を求められるよ。
正十二面体の辺の数を求める問題だね。図から数えると、数え漏れや重複が起こってしまいそう。オイラーの多面体定理を活用して解いていこう。