高校数学B

高校数学B
5分で解ける!数学的帰納法(2)に関する問題

25

5分で解ける!数学的帰納法(2)に関する問題

25

子どもの勉強から大人の学び直しまで
ハイクオリティーな授業が見放題

カンタン登録1分

この動画の問題と解説

例題

一緒に解いてみよう

高校数学B 数列32 例題

解説

これでわかる!
例題の解説授業
lecturer_avatar

数学的帰納法を使って証明する問題ですね。「n=1で確認」「n=kを仮定」「n=k+1を証明」という3段階の手順で証明していきましょう。

POINT
高校数B 数列31 ポイント

n=1で成り立つことを確認

高校数学B 数列32 例題

lecturer_avatar

数学的帰納法では、まず n=1で与式が成り立つことを確認 します。
T(n)4n-1とおき、n=1を代入すると、
T(1)=41-1=3
より、3の倍数であることが成立していますね。

高校数学B 数列32 例題 1~2行目

n=kで成り立つと仮定

lecturer_avatar

次に、 n=kで与式が成り立つと仮定 しましょう。
つまり、n=kを代入した式
T(k)=4k-1が3の倍数である
が、"もし成り立つならば……"と仮定するのです。

lecturer_avatar

ここで大事なコツがあります。
3の倍数なら3m (mは整数)
とおきましょう。
4k-1=3m (mは整数)
とすることで、次の手順③の式で利用しやすくなります。

高校数学B 数列32 例題 3~4行目

n=k+1で成り立つことを証明

lecturer_avatar

n=kが成り立っているとき、1つ大きい n=k+1が成り立つことを証明 しましょう。
つまり、
T(k+1)=4k+1-1が3の倍数である
ことを示していきます。

lecturer_avatar

n=kを代入した式は成り立っているものとして使うことができるので、
4k-1=3m
4k=3m+1
をT(k+1)の式に代入しましょう。

lecturer_avatar

すると、
T(k+1)=4× (3m+1) -1=12m+3
となり、 12m+3は3で割り切れます ね!したがって、n=k+1の時も成り立つことが証明されました。

lecturer_avatar

これで数学的帰納法による証明は終了です。最後にすべての自然数について式が成り立つということをしっかり書きましょう。

答え
高校数学B 数列32 例題 答え
数学的帰納法(2)
25
友達にシェアしよう!
  • 学校で使っている教科書にあわせて勉強できる

      会員登録をクリックまたはタップすると、利用規約・プライバシーポリシーに同意したものとみなします。
      ご利用のメールサービスで @try-it.jp からのメールの受信を許可して下さい。詳しくは
      こちらをご覧ください。

      高校数学Bの問題

      この授業のポイント・問題を確認しよう

      数列

          会員登録をクリックまたはタップすると、利用規約・プライバシーポリシーに同意したものとみなします。
          ご利用のメールサービスで @try-it.jp からのメールの受信を許可して下さい。詳しくは
          こちらをご覧ください。

          漸化式と数学的帰納法

              会員登録をクリックまたはタップすると、利用規約・プライバシーポリシーに同意したものとみなします。
              ご利用のメールサービスで @try-it.jp からのメールの受信を許可して下さい。詳しくは
              こちらをご覧ください。

              高校数学B

              高校数学B