高校数学Ⅰ
5分で解ける!90°を超える三角比2(135°、150°)に関する問題
- ポイント
- 例題
- 練習
この動画の問題と解説
例題
一緒に解いてみよう
解説
これでわかる!
例題の解説授業
底辺をマイナスと考える
135°の三角比は、以下のような 座標平面 で考えるよ。
sin135°の値はどうなるかな?
sinθ=(高さ)/(斜辺)
高さは1、斜辺は√2だね。
sin120°=1/√2
値がマイナスになる 底辺 は、 関係しない ね。sin135°の値は、プラスになるよ。
cos135°の値はどうなるかな?
cosθ=(底辺)/(斜辺)
底辺は-1、斜辺は√2だね。
cos135°=-1/√2
となるよ。
tan135°の値はどうかな?
tanθ= (高さ)/(底辺)
高さは1、底辺-1だから、
tan135°=1/(-1)
マイナスの値になるよ。
sin135°、cos135°、tan135°の値を求めよう。
ポイントは以下の通り。 基本は45°の三角比 と同じ。ただ、 底辺はマイナス で考えるんだね。