高校数学Ⅰ
5分で解ける!正弦定理と外接円に関する問題
- ポイント
- 例題
- 練習
この動画の問題と解説
例題
一緒に解いてみよう
解説
これでわかる!
例題の解説授業
「外接円の半径」がヒントのときは正弦定理が使える
外接円の半径Rが出てくることから、 正弦定理 の利用を考えよう。
公式に当てはめると、 √2/sinB=2√2 となるね。
これを解くと、 sinB=1/2 。
あとは「sinB=1/2」を満たす∠Bを見つければいいね。
sinθは要注意!
sinθ からθの角度を求めるときは、 注意しないといけない よ。下の図のように、0°<θ<180°の範囲では、θの値が 2つ存在 するんだ(θ=90°をのぞく)。
sinB=1/2を満たすBは30°と150°だね。
△ABCにおいて、1辺の長さと外接円の半径から角度を求める問題だね。
ポイントは以下の通り。外接円の半径がからむときは、正弦定理が使えるよ。