高校数学Ⅱ
5分で解ける!tanの加法定理に関する問題
- ポイント
- 例題
- 練習
この動画の問題と解説
練習
一緒に解いてみよう
解説
これでわかる!
練習の解説授業
まずはtan(α+β)の値を求めよう
tanα=3(0<α<π/2),tanβ=2(0<β<π/2)からは、α、βの値がうまく求められません。
そこで、加法定理より tan(α+β)を求めてそこからα+βを求める 解答方針を立てましょう。
すると、
tan(α+β)
= tanα+tanβ/1-tanαtanβ
=(3+2)/(1-3×2)
=-1
α+βの範囲に注意しよう
tan(α+β)=-1より、45°、45°、90°の直角三角形をイメージできますね。
次にα+βの範囲を求めてあげましょう。
0<α<π/2,0<β<π/2より
0<α+β<π です。
つまり、α+βは第1,2象限にあります。
さらに、tanの値は マイナス なので、第2象限にあり、α+β=135°と求まりますね。
tanα、tanβの値をもとに、α+βの角度の値を求める問題です。αの値、βの値は問題に与えられている条件からは求めることができません。したがって、α+βは、tan(α+β)の値を求めることにより、角度の値を考えていきましょう。