高校数学Ⅱ

高校数学Ⅱ
5分でわかる!f'(a) は接線の傾き

136

5分でわかる!f'(a) は接線の傾き

136

子どもの勉強から大人の学び直しまで
ハイクオリティーな授業が見放題

カンタン登録1分

この動画の要点まとめ

ポイント

f'(a)は接線の傾き

高校数学Ⅱ 微分法と積分法8 ポイント

これでわかる!
ポイントの解説授業

微分係数は接線の傾きになる

lecturer_avatar

今回のテーマは「f'(a)は接線の傾き」です。
これまで、微分係数の求め方について学習してきましたね。関数f(x)における微分係数f'(a)は、 関数y=f(x)のグラフ で考えるとき、実は x=aにおける接線の傾きになる のです。

POINT
高校数学Ⅱ 微分法と積分法8 ポイント
lecturer_avatar

このポイントだけを見てサッと理解できる人は少ないと思います。内容を詳しく解説していきましょう。

関数y=f(x)上に2点A,Pをとる

lecturer_avatar

まず曲線C:y=f(x)上に、点A(a,f(a))と点P(a+h,f(a+h))をとります。点Pは、点Aからx座標がh離れた曲線上の点ですね。

lecturer_avatar

この時、線分APの傾きは yの増加量/xの増加量 より
f(a+h)-f(a)/(a+h)-a = f(a+h)-f(a)/h
となりますね。

lecturer_avatar

点Aを通る曲線上の接線ℓを考えるとき、点Pをどんどん点Aに近づけていくことを考えてください。

高校数学Ⅱ 微分法と積分法8 ポイント 図のみ
lecturer_avatar

すると、(APの傾き)が、どんどん(ℓの傾き)に近づいていきますね。つまり、点P(a+h,f(a+h))において、hの値を限りなく0に近づけると、(APの傾き)が(ℓの傾き)になるのです。

hを0に近づけるときの極限値

lecturer_avatar

ここで、微分係数f'(a)の求め方を思い出しましょう。

復習
高校数学Ⅱ 微分法と積分法3 ポイント
lecturer_avatar

limの後ろの部分を見ると、 APの傾きの式と同じ ですね!
よって、 f'(a)=limh→0APの傾き となりますね。 hが限りなく0に近づいていく と、 線分APの傾きはlの傾き になります。

POINT
高校数学Ⅱ 微分法と積分法8 ポイント
lecturer_avatar

したがって、 関数y=f(x)のグラフ では、 x=aにおける接線の傾きはf'(a)の値になる のです。

lecturer_avatar

実際に問題を解きながら、このポイントを身につけていきましょう。

この授業の先生

浅見 尚 先生

センター試験数学から難関大理系数学まで幅広い著書もあり、現在は私立高等学校でも 受験数学を指導しており、大学受験数学のスペシャリストです。

f'(a) は接線の傾き
136
友達にシェアしよう!
  • 学校で使っている教科書にあわせて勉強できる

      会員登録をクリックまたはタップすると、利用規約・プライバシーポリシーに同意したものとみなします。
      ご利用のメールサービスで @try-it.jp からのメールの受信を許可して下さい。詳しくは
      こちらをご覧ください。

      この授業のポイント・問題を確認しよう

      微分法と積分法

          会員登録をクリックまたはタップすると、利用規約・プライバシーポリシーに同意したものとみなします。
          ご利用のメールサービスで @try-it.jp からのメールの受信を許可して下さい。詳しくは
          こちらをご覧ください。

          微分係数と導関数

              会員登録をクリックまたはタップすると、利用規約・プライバシーポリシーに同意したものとみなします。
              ご利用のメールサービスで @try-it.jp からのメールの受信を許可して下さい。詳しくは
              こちらをご覧ください。

              高校数学Ⅱ