高校数学Ⅱ
5分で解ける!3次方程式の実数解の個数に関する問題
- ポイント
- 例題
- 練習
この動画の問題と解説
練習
一緒に解いてみよう
解説
これでわかる!
練習の解説授業
「 異なる3つの実数解の個数をもつ 」ということは、「 y=f(x)のグラフとx軸との共有点の個数が3個になる 」ということですね。x軸との共有点の個数が3個になるよう、aの範囲を定めていきます。
導関数f'(x)から、f(x)の増減を調べる
f(x)=x3+3x+aとおき、y=f(x)の3次関数のグラフで考えていきます。まずは微分して、f(x)の増減について調べましょう。
f'(x)=3x2-6x
⇔f'(x)=3x(x-2)より、
x=0,2のとき、f'(x)=0となり、f(x)は極値をもちますね。
x=0とx=2のどちらで極大値をとるかわかりますか? f(x)=x3+3x+aにおける x3の係数 を見れば判断できますね。 x3の係数が正 なので、グラフは次のような概形になります。
グラフから、 x=0で極大、x=2で極小 とわかりました。
極大値f(0)=a
極小値f(2)=a-4
となります。
「異なる3つの実数解」⇔「x軸との共有点3個」
では、どのようなグラフであれば、実数解すなわち共有点を3つもつのかを考えてみましょう。このグラフは「上がって、下がって、上がるグラフ」です。共有点を3つもつようにするには、次のように考えます。
つまり「 極大値が0より大きい 」かつ「 極小値が0より小さい 」グラフであれば、必ずx軸と異なる3つの実数解を持つわけです。
つまり、
極大値f(0)=a>0
極小値f(2)=a-4<0
これらの不等式を解くと、aの値の範囲が定まりますね。
3次方程式が 異なる3つの実数解の個数をもつ という条件から、定数aの値の範囲を求める問題です。「 異なる3つの実数解の個数をもつ 」ことが何を意味するのかよく考えましょう。