高校数学Ⅱ
5分で解ける!グラフを活用する不等式の証明に関する問題
- ポイント
- 例題
- 練習
この動画の問題と解説
練習
一緒に解いてみよう
解説
これでわかる!
練習の解説授業
導関数f'(x)から、f(x)の増減を調べる
まずは、f(x)=x3+3x2-9x+5とおき、y=f(x)のグラフを書いていきます。 範囲がx≧0である ことも忘れないようにしておきましょう。
f'(x)=3x2+6x-9
⇔f'(x)=3(x+3)(x-1)より、
x=-3,1のとき、f'(x)=0となり、f(x)は極値をもちますね。
x=-3とx=1のどちらで極大値をとるかわかりますか? f(x)における x3の係数 を見れば判断できますね。 x3の係数が正 なので、グラフは「 上がって、下がって、上がる 」。
つまり、 x=-3で極大、x=1で極小 です。
極大値f(-3)=32
極小値f(1)=0
となります。
グラフを書いて、x軸の上側に注目
y=x3+3x2-9x+5のグラフを書くための材料はそろいましたね。
上がって、下がって、上がるグラフ で、 極大値f(-3)=32 、 極小値f(1)=0 となります。 範囲がx≧0である ことにも注目すると、次の図のようなグラフが書けますね。
x≧0では常にグラフはx軸の上側にある ので、 x≧0のときf(x)≧0 が示せました。等号成立は、f(x)=0の時、すなわちx軸との交点になります。 x=1 とわかりますね。
3次式の不等式を証明する問題ですね。y=f(x)のグラフが「x軸より上側にあれば、yの値は正」であることを活用して解いていきましょう。