高校数学Ⅱ

高校数学Ⅱ
5分でわかる!不定積分 ∫f(x)dx

159

5分でわかる!不定積分 ∫f(x)dx

159

子どもの勉強から大人の学び直しまで
ハイクオリティーな授業が見放題

カンタン登録1分

この動画の要点まとめ

ポイント

不定積分∫f(x)dx

高校数学Ⅱ 微分法と積分法18 ポイント

これでわかる!
ポイントの解説授業
lecturer_avatar

今回のテーマは「不定積分∫f(x)dx」です。
∫は インテグラル と読む記号で、 ∫f(x)dxは、微分するとf(x)になる関数 を表します。 微分するとf(x)になる関数を求める ことを 積分する といいます。…といっても、サッと理解できる人は少ないでしょう。次のポイントを用いながら、具体的に確認していきましょう。

POINT
高校数学Ⅱ 微分法と積分法18 ポイント

積分は「微分の逆」になる

lecturer_avatar

簡単にいうと、 積分は「微分の逆」の計算 になります。

lecturer_avatar

例えば、 xを微分すると1 になりますね。
(x)'=1
では、 1を積分 してみましょう。
∫1dx=x+C (Cは定数)
微分する前の関数に戻すので、 1を積分するとx+C になりました。

高校数学Ⅱ 微分法と積分法18 ポイント 4行目のみ
lecturer_avatar

定数項を微分すると0になって消えてしまう ので、 積分するときは定数Cをつける ことになっています。

xを積分してみよう!

lecturer_avatar

もう1つ具体例を見ましょう。
(1/2)x2を微分するとx になりますね。
{(1/2)x2}'=x
では、 xを積分 してみましょう。
∫xdx=(1/2)x2+C (Cは定数)
微分する前の関数に戻すので、 xを積分すると(1/2)x2+C になりました。

高校数学Ⅱ 微分法と積分法18 ポイント 5行目のみ
lecturer_avatar

∫f(x)dxは、 微分するとf(x)になる関数 を求める計算です。 微分する前の状態にf(x)を戻す ことを考えればよいのです。では、実際に積分の問題を解いていきましょう。

この授業の先生

浅見 尚 先生

センター試験数学から難関大理系数学まで幅広い著書もあり、現在は私立高等学校でも 受験数学を指導しており、大学受験数学のスペシャリストです。

不定積分 ∫f(x)dx
159
友達にシェアしよう!
  • 学校で使っている教科書にあわせて勉強できる

      会員登録をクリックまたはタップすると、利用規約・プライバシーポリシーに同意したものとみなします。
      ご利用のメールサービスで @try-it.jp からのメールの受信を許可して下さい。詳しくは
      こちらをご覧ください。

      この授業のポイント・問題を確認しよう

      微分法と積分法

          会員登録をクリックまたはタップすると、利用規約・プライバシーポリシーに同意したものとみなします。
          ご利用のメールサービスで @try-it.jp からのメールの受信を許可して下さい。詳しくは
          こちらをご覧ください。

          積分法

              会員登録をクリックまたはタップすると、利用規約・プライバシーポリシーに同意したものとみなします。
              ご利用のメールサービスで @try-it.jp からのメールの受信を許可して下さい。詳しくは
              こちらをご覧ください。

              高校数学Ⅱ