高校数学Ⅲ
5分で解ける!極形式で表される複素数の積に関する問題
- ポイント
- 問題
- 問題
この動画の問題と解説
問題
一緒に解いてみよう
解説
これでわかる!
問題の解説授業
「絶対値は積」「偏角は和」
αβの絶対値は, (αの絶対値2√2)×(βの絶対値2)=4√2 となりますね。αβの偏角は, (αの偏角π/4)+(βの偏角5π/4)=3π/2 となります。これらを極形式の積の公式に代入すると,
αβ= 4√2 {cos( 3π/2 )+isin( 3π/2 )}
ですね。
ただし,今回はαβの値を求める問題なので,極形式αβ=4√2{cos(3π/2)+isin(3π/2)}を最後まで計算しましょう。
αβ=4√2{cos(3π/2)+isin(3π/2)}=4√2(0-i)=-4√2i
となります
極形式で表された2つの複素数α,βの積αβの値を求める問題です。次のポイントの公式を用いて解いていきましょう。