高校数学Ⅲ
5分で解ける!原点を中心とする回転移動(1)に関する問題
- ポイント
- 問題
- 問題
この動画の問題と解説
問題
一緒に解いてみよう
解説
これでわかる!
問題の解説授業
この問題では,点-izのうち,どこがwに当たる式かを考えていきましょう。
-iを極形式で表すと……
回転後の点は,原点を中心とするときの回転角をθとすると,zとw=cosθ+isinθとの積で表されます。点-izのうち,zにかけ算されている -i がcosθ+isinθにあたりますね。
θの範囲-π≦θ<πに注意して,-iを極形式で表すと,
i=0-i=cos(-π/2)+isin(-π/2)
となり,回転角θ=-π/2とわかります。
点zを回転させると,点-izになったという問題です。どれだけ回転させたかを求めていきましょう。ポイントになるのは,回転後の点の表し方です。原点を中心とするときの回転角をα,w=cosα+isinαとおくとき,回転後の点はwzで表すことができます。