高校数学Ⅲ

高校数学Ⅲ
5分でわかる!双曲線の方程式(1)

34

5分でわかる!双曲線の方程式(1)

34

子どもの勉強から大人の学び直しまで
ハイクオリティーな授業が見放題

カンタン登録1分

この動画の要点まとめ

ポイント

双曲線の方程式(1)

式と曲線8 ポイント

これでわかる!
ポイントの解説授業
lecturer_avatar

xとyの2次式で表された曲線である2次曲線のうち,双曲線の方程式について解説していきましょう。

双曲線の定義とは?

lecturer_avatar

双曲線は,2つの定点F,F'からの距離の差が一定であるような点P(x,y)の軌跡と定義されます。楕円2定点からの距離の和だったのに対し,双曲線2定点からの距離の差となるのですね。楕円と双曲線の違いは,和と差なんです。

POINT
式と曲線8 ポイント 見出しと1~3行目
lecturer_avatar

2定点F,F'は,楕円のときと同様に焦点と呼びます。

双曲線のグラフと方程式

lecturer_avatar

c>a>0として,2つの 焦点F(c,0),F'(-c,0) から点P(x,y)までの距離の差を2aとするとき,双曲線のグラフと方程式は次のように表すことができます。

POINT
式と曲線8 ポイント
lecturer_avatar

双曲線の定義から |PF-PF'|=2a となりますね。 |PF-PF'|=2a にx,yを代入して計算すると,最終的に (x2/a2)-(y2/c2-a2)=1 が導けます。これが双曲線の方程式となるのですね。

lecturer_avatar

楕円ではa>c>0としていましたが,双曲線ではc>a>0です。式も,
楕円:(x2/a2) + (y2/ a2-c2 )=1
双曲線:(x2/a2) - (y2/ c2-a2 )=1
であり,符号・分母が異なりますね。

POINT
式と曲線8 ポイント
lecturer_avatar

また,上の図では,点(±a,0)が双曲線の頂点となっています。双曲線の頂点は2つあるのです。

焦点がx軸上にある双曲線は左右に分かれる

lecturer_avatar

今回は2つの焦点がx軸上にある双曲線を紹介しましたが,後に2つの焦点がy軸上にある双曲線も登場します。まずは2つの焦点がx軸上にある双曲線のグラフと方程式が,次のポイントのようになることを覚えておきましょう。

POINT
式と曲線8 ポイント
lecturer_avatar

2つの焦点がx軸上にある双曲線のグラフは,曲線が左右に分かれます。また,方程式は, x2の分母がa2y2の分母がc2-a2 となることをおさえておきましょう。

「2定点からの距離の差が2a」を式で表すと……

lecturer_avatar

ちなみに, |PF-PF'|=2a から双曲線の方程式を導くまでの計算式は次のようになります。計算過程についても確認しておきましょう。

双曲線の方程式の導出

|PF-PF'|=2aより,

|√{(x-c)2+y2}-√{(x+c)2+y2}|=2a

⇔√{(x-c)2+y2}=±2a+√{(x+c)2+y2}

両辺を2乗して,整理すると,

-a2-cx=±a√{(x+c)2+y2}

さらに両辺を2乗して,整理すると,

(c2-a2)x2-a2y2=a2(c2-a2)

両辺をa2(c2-a2)で割って,

(x2/a2)-(y2/c2-a2)=1

となる。

この授業の先生

浅見 尚 先生

センター試験数学から難関大理系数学まで幅広い著書もあり、現在は私立高等学校でも 受験数学を指導しており、大学受験数学のスペシャリストです。

双曲線の方程式(1)
34
友達にシェアしよう!
  • 学校で使っている教科書にあわせて勉強できる

      会員登録をクリックまたはタップすると、利用規約・プライバシーポリシーに同意したものとみなします。
      ご利用のメールサービスで @try-it.jp からのメールの受信を許可して下さい。詳しくは
      こちらをご覧ください。

      この授業のポイント・問題を確認しよう

      式と曲線

          会員登録をクリックまたはタップすると、利用規約・プライバシーポリシーに同意したものとみなします。
          ご利用のメールサービスで @try-it.jp からのメールの受信を許可して下さい。詳しくは
          こちらをご覧ください。

          2次曲線

              会員登録をクリックまたはタップすると、利用規約・プライバシーポリシーに同意したものとみなします。
              ご利用のメールサービスで @try-it.jp からのメールの受信を許可して下さい。詳しくは
              こちらをご覧ください。

              高校数学Ⅲ