高校数学Ⅲ
5分でわかる!双曲線の方程式(2)
- ポイント
- 問題
- 問題
この動画の要点まとめ
ポイント
双曲線の方程式(2)
これでわかる!
ポイントの解説授業
この双曲線は,2つの焦点F,F'がx軸上にあるのでしたね。これに対して,今回の授業では2つの焦点F,F'がy軸上にある双曲線の式について解説します。
2つの焦点はF(0,c),F'(0,-c)
双曲線の定義は,2つの焦点F,F'からの距離の差が一定となる点P(x,y)の軌跡です。今回は,c>a>0とするとき,焦点F(0,c),(0,-c)からの距離の差が2aとなる点P(x,y)の軌跡を式で表してみましょう。
定義から |PF-PF'|=2a となり,x,yを代入して計算すると,最終的に 双曲線:(x2/c2-a2)-(y2/a2)=-1 が導けます。
x軸上に焦点がある双曲線の方程式との違い
x軸上に焦点がある双曲線の方程式
(x2/a2)-(y2/c2-a2)=1 と,
y軸上に焦点がある双曲線の方程式
(x2/c2-a2)-(y2/a2)=-1
との違いをしっかり覚えておきましょう。まず分母が入れ替わっていますね。そして右辺の符号がプラスとマイナスで異なります。
楕円と双曲線の方程式は,焦点がx軸上にあるか,y軸上にあるかで式が異なってきます。それぞれしっかりと区別して覚えましょう。
前回の授業では,c>a>0とするとき,焦点F(c,0),F'(-c,0)からの距離の差が2aとなる点P(x,y)の軌跡が双曲線:(x2/a2)-(y2/c2-a2)=1となることを学習しました。