高校数学Ⅲ
5分で解ける!双曲線のグラフ(1)に関する問題
- ポイント
- 問題
- 問題
この動画の問題と解説
問題
一緒に解いてみよう
解説
これでわかる!
問題の解説授業
双曲線は,漸近線y=±(b/a)xにどんどん近づくように描きましょう。また, 焦点の座標(±c,0) は, c2=a2+b2 の関係式から求められます。
a,bの値から「漸近線」と「頂点」を求める
双曲線:(x2/9)-(y2/16)=1は,y2の係数がマイナス, 方程式の右辺が「=1」 であることから,左右に分かれた双曲線がイメージできますね。
(x2/a2)-(y2/b2)=1 の式におけるa,bの値は,a2=9,b2=16からa=3,b=4とわかります。これらを漸近線y=±(b/a)xに代入すると,漸近線はy=±(4/3)xとなりますね。また, 頂点(±a,0) より2つの 頂点は(±3,0) です。
これらの情報をもとにグラフを描いていきましょう。xy平面において, 点(±3,0) を打ち込み,y=±(4/3)xの直線を記します。 頂点を(±3,0) とする左右に分かれた双曲線を,漸近線y=±(4/3)xに近づけるように描くと答えになります。
「c2=a2+b2」から焦点を求める
最後に焦点の座標を求めましょう。双曲線:(x2/a2)-(y2/b2)=1において,焦点F(c,0),F'(-c,0)とすると, c2=a2+b2 が成り立ちました。
a=3,b=4なので,
c2=42+42=25
となり,c=5です。 焦点F(5,0),F'(-5,0) と求められますね。
双曲線の方程式を手掛かりにして,グラフを描き,焦点の座標を求める問題です。方程式が (x2/a2)-(y2/b2)=1 の形であるとき,y2の係数がマイナス, 方程式の右辺が「=1」 であることから,左右に分かれた双曲線がイメージできますね。グラフを描くときに必要となる漸近線は,y=±(b/a)xで求められました。