高校数学Ⅲ

高校数学Ⅲ
5分で解ける!x,yの方程式から極方程式へ(2)に関する問題

47

5分で解ける!x,yの方程式から極方程式へ(2)に関する問題

47

子どもの勉強から大人の学び直しまで
ハイクオリティーな授業が見放題

カンタン登録1分

この動画の問題と解説

問題

一緒に解いてみよう
x,yの方程式から極方程式へ(2)

式と曲線28 問題

解説

これでわかる!
問題の解説授業
lecturer_avatar

x,yで表された円と双曲線の方程式を,極方程式へと変換する問題です。x,yの方程式から極方程式へと変換するときは,x=rcosθy=rsinθを代入するのがポイントでした。

POINT
式と曲線27 ポイント 27のポイント流用です
lecturer_avatar

前回の授業と同じようにして解いていきましょう。

x=rcosθ,y=rsinθを代入

式と曲線28 問題(1)

lecturer_avatar

極方程式はr=f(θ)で表されます。円の方程式に,x=rcosθy=rsinθを代入して,rとθの関係式に置き換えましょう。(x-1)2+(y+2)2=5⇔x2-2x+y2+4y=0より,
(rcosθ)2-2
rcosθ
+(rsinθ)2+4rsinθ=0
⇔r2(cos2θ+sin2θ)-2rcosθ+4rsinθ=0
ここでcos2θ+sin2θ=1より,
r2-2rcosθ+4rsinθ=0……①

lecturer_avatar

①をrの2次式と見て解くと,
r(r-2cosθ+4sinθ)=0より,r=2cosθ-4sinθ。極方程式は円を表します。r=0は,この極方程式r=2cosθ-4sinθに含まれる点に注意してください。

(1)の答え
式と曲線28 問題(1) 答え

式と曲線28 問題(2)

lecturer_avatar

双曲線の方程式に,x=rcosθy=rsinθを代入して,rとθの関係式に置き換えましょう。x2-y2=1より,
(rcosθ)2-(rsinθ)2=1
⇔r2(cos2θ-sin2θ)=1
ここで三角関数の2倍角の公式より,cos2θ-sin2θ=cos2θだから,
r2cos2θ=1
となります。これ以上は整理できないので,r2を残したまま答えになります。

(2)の答え
式と曲線28 問題(2) 答え
lecturer_avatar

x,yで表された円と双曲線の方程式を,極方程式へと変換する手順がつかめましたか。最後に解法のポイントをまとめておきましょう。

POINT
式と曲線28 ポイント
x,yの方程式から極方程式へ(2)
47
友達にシェアしよう!
  • 学校で使っている教科書にあわせて勉強できる

      会員登録をクリックまたはタップすると、利用規約・プライバシーポリシーに同意したものとみなします。
      ご利用のメールサービスで @try-it.jp からのメールの受信を許可して下さい。詳しくは
      こちらをご覧ください。

      この授業のポイント・問題を確認しよう

      式と曲線

          会員登録をクリックまたはタップすると、利用規約・プライバシーポリシーに同意したものとみなします。
          ご利用のメールサービスで @try-it.jp からのメールの受信を許可して下さい。詳しくは
          こちらをご覧ください。

          媒介変数表示と極座標

              会員登録をクリックまたはタップすると、利用規約・プライバシーポリシーに同意したものとみなします。
              ご利用のメールサービスで @try-it.jp からのメールの受信を許可して下さい。詳しくは
              こちらをご覧ください。

              高校数学Ⅲ