高校数学Ⅲ
5分で解ける!無理関数のグラフ(2)に関する問題
- ポイント
- 問題
- 問題
この動画の問題と解説
問題
一緒に解いてみよう
解説
これでわかる!
問題の解説授業
-x+1=0となる点が出発点
無理関数のグラフを描くときは,まず曲線の出発点を見極めます。この式では,ルートの中身-x+1=0となる点になりますね。-x+1=0を解くとx=1より, 点(1,0) が出発点となります。
出発点がわかったら,あとはy=√(-x)のグラフを描くときと同じです。a=-1<0なので,出発点(1,0)から左上がりの曲線を描きましょう。
グラフの通過点は,
x=0のとき,y=√(-1×0+1)=1
となります。
定義域と値域は?
定義域(xの値の範囲),値域(yの値の範囲)は,式とグラフをもとに考えていきましょう。
図から,定義域(xの値の範囲)はx≦1となりますね。また,値域(yの値の範囲)は,y≧0だとわかります。
無理関数y=√(-x+1) のグラフを描く問題です。ルートの中身が0になる点に注目して,出発点を求めるのがポイントでしたね。