高校数学Ⅲ

高校数学Ⅲ
5分で解ける!不定形について(3)に関する問題

56

5分で解ける!不定形について(3)に関する問題

56

子どもの勉強から大人の学び直しまで
ハイクオリティーな授業が見放題

カンタン登録1分

この動画の問題と解説

問題

一緒に解いてみよう
不定形について(3)

極限6 問題

解説

これでわかる!
問題の解説授業
lecturer_avatar

式の目指す値が見かけ上わからない極限を不定形と言います。これまで 「∞-∞」「∞÷∞」 の不定形の解法を学習しましたね。今回学習するのは根号(ルート)を含む「∞-∞」のパターンの不定形です。例えば,次の問題を見てください。

極限6 問題

lecturer_avatar

√(n2+n)の極限が∞を目指すのに対し,-nの極限は-∞を目指します。 「∞-∞」となってしまい,どんな値を目指して進むかわからなくなってしまいます ね。

「有理化の逆演算をする」のがコツ

lecturer_avatar

極限の不定形は,式がどんな値を目指して進むか,はっきりさせるように式変形することが必要になります。特に根号(ルート)を含む「∞-∞」の不定形では,有理化の逆演算をするのがコツです。

POINT
極限6 ポイント
lecturer_avatar

……といっても,「なるほど,よくわかった」とすぐに理解できる人は少ないですよね。実際に問題を解きながら,このポイントを確認しましょう。

分母・分子に√(n2+n)+nをかけ算

極限6 問題

lecturer_avatar

√(n2+n)-nの極限は「∞-∞」の不定形となってしまいます。不定形を解消するために,ルートを外すことを考えましょう。

lecturer_avatar

ルートを外すときには,有理化の計算を活用します。ルートの計算では,分母に√a+√bの式があったとき,分母・分子に√a-√bをかけ算し, (2乗)ー(2乗) をつくってルートを外してきましたね。これを有理化と言いました。今回は,√(n2+n)-nの式を分子と見立て,分子のルートを外すために,分母・分子に√(n2+n)+nをかけ算します。

極限6 問題 解答1~3行目

lecturer_avatar

分子はカッコ×カッコの展開計算より, {√(n2+n)}2-n2=(n2+n)-n2=n となって上手くルートが外れました。ただし,分母には√(n2+n)+nが残ってしまいましたね。

極限6 問題 解答1~3行目

lecturer_avatar

nが∞を目指して進むとき,分子も分母も∞を目指す極限の式になっています。これは 「∞÷∞」の不定形 のパターンですね!「∞÷∞」の不定形は,分母・分子をnで割ると不定形を解消できましたね。

極限6 問題 解答1~5行目

lecturer_avatar

計算式4行目から5行目に移るとき,(1/n)をルートの中に入れるとき(1/n2)になることに注意してください。(1/n)の極限は0を目指すので,次のように答えを出すことができます。

答え
極限6 問題 解答
lecturer_avatar

有理化は本来,分母のルートを消すための計算ですが,ここでは逆に分子のルートを消すことをしています。根号(ルート)を含む「∞-∞」のパターンの不定形は,有理化の逆演算をするのがコツと覚えておきましょう。

POINT
極限6 ポイント
不定形について(3)
56
友達にシェアしよう!
  • 学校で使っている教科書にあわせて勉強できる

      会員登録をクリックまたはタップすると、利用規約・プライバシーポリシーに同意したものとみなします。
      ご利用のメールサービスで @try-it.jp からのメールの受信を許可して下さい。詳しくは
      こちらをご覧ください。

      この授業のポイント・問題を確認しよう

      極限

          会員登録をクリックまたはタップすると、利用規約・プライバシーポリシーに同意したものとみなします。
          ご利用のメールサービスで @try-it.jp からのメールの受信を許可して下さい。詳しくは
          こちらをご覧ください。

          数列の極限

              会員登録をクリックまたはタップすると、利用規約・プライバシーポリシーに同意したものとみなします。
              ご利用のメールサービスで @try-it.jp からのメールの受信を許可して下さい。詳しくは
              こちらをご覧ください。

              高校数学Ⅲ