高校数学Ⅲ

高校数学Ⅲ
5分で解ける!関数の極限の計算(1)に関する問題

49

5分で解ける!関数の極限の計算(1)に関する問題

49

子どもの勉強から大人の学び直しまで
ハイクオリティーな授業が見放題

カンタン登録1分

この動画の問題と解説

問題

一緒に解いてみよう
関数の極限の計算(1)

極限22 問題

解説

これでわかる!
問題の解説授業

「0÷0」の不定形になる!?

lecturer_avatar

xが1を目指して進むときの極限を求めます。limの右側の式に注目すると,x=1を単純代入したとき,分母の(x2-3x+2)は0を目指して進み,分子の(x3-1)も0を目指して進みます。 「0÷0」の不定形 となり,この式からは極限がわからなくなってしまいますね。

計算のコツは「因数分解して約分!」

極限22 問題

lecturer_avatar

では,不定形を解消するために,どのような計算が必要になるでしょうか? 分母・分子をx2やx3で割っても不定形は解消されません。 「0÷0」の不定形 では,実は因数分解して約分するのがコツになります。実際に問題で確認していきましょう。

分母・分子を因数分解

極限22 問題

lecturer_avatar

まず分子を因数分解して,
x3-1= (x-1) (x2+x+1)
次に分母を因数分解して,
x2-3x+2= (x-1) (x-2)
共通因数の(x-1) が見つかりました。

約分してx=1を単純代入

lecturer_avatar

分母・分子を共通因数の(x-1)で約分すると次のように式変形できます。

極限22 問題 解答1~4行目

lecturer_avatar

分母は(x-2),分子は(x2+x+1)です。x=1を代入しても,分母が0となりません。不定形が解消されましたね。したがって,あとはx=1を単純代入して答えが求められます。

答え
極限22 問題 解答

「0÷0」の不定形が約分できる理由

lecturer_avatar

「0÷0」の不定形 の解消のポイントを,一般的な式でまとめると次のようになります。

POINT
極限22 問題
lecturer_avatar

なお,f(x),g(x)について,f(a)=g(a)=0が成り立つとき,f(x)もg(x)も必ず(x-a)で割り切ることができます。これは数学Ⅱで学習した因数定理によって証明できます。 「0÷0」の不定形因数分解して約分がポイントとなることをおさえておきましょう。

関数の極限の計算(1)
49
友達にシェアしよう!
  • 学校で使っている教科書にあわせて勉強できる

      会員登録をクリックまたはタップすると、利用規約・プライバシーポリシーに同意したものとみなします。
      ご利用のメールサービスで @try-it.jp からのメールの受信を許可して下さい。詳しくは
      こちらをご覧ください。

      この授業のポイント・問題を確認しよう

      極限

          会員登録をクリックまたはタップすると、利用規約・プライバシーポリシーに同意したものとみなします。
          ご利用のメールサービスで @try-it.jp からのメールの受信を許可して下さい。詳しくは
          こちらをご覧ください。

          関数の極限

              会員登録をクリックまたはタップすると、利用規約・プライバシーポリシーに同意したものとみなします。
              ご利用のメールサービスで @try-it.jp からのメールの受信を許可して下さい。詳しくは
              こちらをご覧ください。

              高校数学Ⅲ