高校数学Ⅲ

高校数学Ⅲ
5分で解ける!中間値の定理に関する問題

11

5分で解ける!中間値の定理に関する問題

11
トライ式高等学院通信制高校トライ式高等学院通信制高校

この動画の問題と解説

問題

一緒に解いてみよう

極限36 問題1

解説

これでわかる!
問題の解説授業
lecturer_avatar

x-cosx=0が,0<x<(π/2)の範囲に解を持つことを示す問題です。式を眺めるだけでは,何をしていいか見当がつきません。しかし関数y=x-cosxのグラフをイメージすると,どうでしょうか? y=x-cosxという曲線が,0<x<(π/2)の範囲でx軸と交われば,この範囲で実数解を持つといえますね。そう中間値の定理です。

POINT
極限36 ポイント

関数f(x)=x-cosxの連続を確認

極限36 問題1

lecturer_avatar

中間値の定理を使って証明していきます。まずは,f(x)=x-cosxとおき,関数f(x)が0<x<(π/2)の範囲で連続であることを確認します。

lecturer_avatar

f(x)=x-cosxにおいて,直線y=xは連続であり,曲線y=-cosxも連続です。(連続関数)+(連続関数)なので,f(x)=x-cosxも連続であると言えます。

lecturer_avatar

この関数が連続であることの確認作業は忘れないようにしましょう。中間値の定理は,あくまで切れ目のない連続関数でのみ成り立つ定理です。

f(0)とf(π/2)の符号を確認

lecturer_avatar

次に,y=f(x)のグラフの左端と右端の符号を求めましょう。
左端のx=0のとき
f(0)=0-cos0=-1<0
右端のx=(π/2) のとき
f(π/2)=(π/2)-cos(π/2)=π/2>0

lecturer_avatar

y=f(x)のグラフの左端と右端が異符号であることがわかりましたね。よって中間値の定理より,x-cosx=0は0<x<(π/2)の範囲に解を持つと言えます。

答え
極限36 問題1 答え
lecturer_avatar

わざわざx-cosx=0の方程式を解かなくても,区間の左端と右端の符号に注目するだけで,その区間内に解を持つことを示せるのがポイントです。

トライ式高等学院通信制高校
中間値の定理
11
友達にシェアしよう!
トライ式高等学院通信制高校

この授業のポイント・問題を確認しよう

極限

      会員登録をクリックまたはタップすると、利用規約・プライバシーポリシーに同意したものとみなします。
      ご利用のメールサービスで @try-it.jp からのメールの受信を許可して下さい。詳しくは
      こちらをご覧ください。

      関数の極限

      トライ式高等学院通信制高校トライ式高等学院通信制高校

      高校数学Ⅲ