高校数学Ⅲ

高校数学Ⅲ
5分で解ける!合成関数の微分(2)に関する問題

23

5分で解ける!合成関数の微分(2)に関する問題

23

子どもの勉強から大人の学び直しまで
ハイクオリティーな授業が見放題

カンタン登録1分

この動画の問題と解説

問題

一緒に解いてみよう

微分法11 問題2

解説

これでわかる!
問題の解説授業

合成関数が2つ重なったパターン

lecturer_avatar

y=log{√(x2+1)}を微分する問題です。log{√(x2+1)}は, log□が外の関数f(x)√(x2+1)が内の関数g(x) である合成関数f(g(x))ですね。さらに,g(x)=√(x2+1)も,問題1で見た通り合成関数でした。つまり,y=log{√(x2+1)}は,log□の中に合成関数√(x2+1)が組み込まれたパターンなのです。

(外の関数の微分)×(内の関数の微分)

微分法11 問題2

lecturer_avatar

このように合成関数が重なったパターンでも,計算手順は同じです。合成関数の微分は, (外の関数の微分)×(内の関数の微分) で計算できます。

微分法11 問題2 答え1~2行目

lecturer_avatar

まず,外の関数log□を微分した1/□ に,g(x)=√(x2+1)を組み込んで,
f'(g(x))=1/√(x2+1)
さらに,内の関数の微分は,
g'(x)={√(x2+1)}'
{√(x2+1)}'については,問題1の答えより,
{√(x2+1)}'={x/√(x2+1)}
とわかっていますね。

lecturer_avatar

よって, (外の関数の微分)×(内の関数の微分) より,
y'=f'(g(x))×g'(x)={1/√(x2+1)}×{x/√(x2+1)}
これを整理すると答えとなります。

答え
微分法11 問題2 答え
合成関数の微分(2)
23
友達にシェアしよう!
  • 学校で使っている教科書にあわせて勉強できる

      会員登録をクリックまたはタップすると、利用規約・プライバシーポリシーに同意したものとみなします。
      ご利用のメールサービスで @try-it.jp からのメールの受信を許可して下さい。詳しくは
      こちらをご覧ください。

      この授業のポイント・問題を確認しよう

      微分法

          会員登録をクリックまたはタップすると、利用規約・プライバシーポリシーに同意したものとみなします。
          ご利用のメールサービスで @try-it.jp からのメールの受信を許可して下さい。詳しくは
          こちらをご覧ください。

          いろいろな関数の導関数

              会員登録をクリックまたはタップすると、利用規約・プライバシーポリシーに同意したものとみなします。
              ご利用のメールサービスで @try-it.jp からのメールの受信を許可して下さい。詳しくは
              こちらをご覧ください。

              高校数学Ⅲ