高校数学Ⅲ

高校数学Ⅲ
5分で解ける!グラフのかき方(2)に関する問題

119

5分で解ける!グラフのかき方(2)に関する問題

119

子どもの勉強から大人の学び直しまで
ハイクオリティーな授業が見放題

カンタン登録1分

この動画の問題と解説

問題

一緒に解いてみよう
グラフの書き方(2)

微分法の応用21 問題

解説

これでわかる!
問題の解説授業
lecturer_avatar

y=x+(1/x) のグラフの概形をかく問題です。分母にxがあるので,x=0でグラフは分断されるというイメージをあらかじめもっておきましょう。分数関数において,具体的にグラフをかきおこすには,次の4つの手順が必要となります。

y=f(x)のグラフのかき方

① f(x)の増減を調べる

② f(x)の凹凸を調べる

③ ±∞を目指して進むときの極限を調べる

分数関数のときは漸近線も調べる

lecturer_avatar

手順①
まずは,y=f(x)の増減を調べます。f'(x)の符号から グラフが右上がり(↗),右下がり(↘) となる範囲がわかりますね。このとき極値も求めましょう。
手順②
次に,y=f(x)の凹凸を調べます。f''(x)の符号から グラフが上に凸,下に凸 となる範囲がわかりますね。このとき変曲点も求めましょう。
手順③
さらに,y=f(x)が ±∞を目指して進むときの極限 を調べます。これによって,曲線の左側,右側の形が決定できます。
手順④
分数関数のときには,漸近線も求めます。y=x+(1/x)であれば,分母が0となるx=0が漸近線の1つです。漸近線はもう1つあるのですが,それは後に詳しく解説しましょう。

lecturer_avatar

では,この4つの手順にしたがって,y=x+(1/x) のグラフの概形をかいていきます。

y'=0,y''=0の方程式を解く

微分法の応用21 問題

lecturer_avatar

手順①「増減を調べる」にはy'の符号が,手順②「凹凸を調べる」にはy''の符号が必要となります。y',y''を求めると,

微分法の応用21 問題 答え1~2行目

lecturer_avatar

となりますね。 y'=0,y''=0の方程式を解くと,

微分法の応用21 問題 答え3行目

lecturer_avatar

となり,y'の符号変化の分岐点がx=±1と予測できます。x≠0と制限されるので,y''=0の解はありません。

「x,y',y'',y」の4段増減表を作成

lecturer_avatar

手順①「増減を調べる」,手順②「凹凸を調べる」の仕上げに,増減表 を書きましょう。「x,y',y'',y」の4つの情報を並べるので,次のような4段重ねの表になります。

微分法の応用21 問題 増減表のうち,一番左の列と一番上の行のみうめる あとは空欄

lecturer_avatar

一番上の段には,xの値を書きます。y'=0となる x=±1 と,グラフが分断される境界線となる x=0 を書き込んでおきました。

lecturer_avatar

二番目の段には,y'の符号を書きましょう。
y'=(x2-1)/x2
より,符号を決めるのは 分子の(x2-1) の部分です。x=±1を分岐点として,それぞれの範囲の符号は,

微分法の応用21 問題 増減表のうち,一番左の列と一番目,二番目の行のみうめる あとは空欄

lecturer_avatar

三番目の段には,y''の符号を書きましょう。
y''=2x/x4
より,符号を決めるのは 分子2x の部分です。x=0 を分岐点として,それぞれの範囲の符号は,

微分法の応用21 問題 増減表のうち,一番左の列と一番目,二番目,三番目の行をうめる あとは空欄

lecturer_avatar

四番目の段には, yの増減(凹凸)を書きましょう。y=x+(1/x)にx=±1を代入すると,x=-1のとき極大値-2x=1のとき極小値2とわかります。

微分法の応用21 問題 増減表

lecturer_avatar

yは,単純に右上がり(↗)か,右下がり(↘)かを記すのではなく,凹凸も加味して書き入れています。例えば,y'>0かつy''>0であれば,右上がり(↗)かつ接線の傾きも増加となります。y'>0かつy''<0であれば,右上がり(↗)かつ接線の傾きは減少となります。同様に,y'<0かつy''<0であれば,右下がり(↘)かつ接線の傾きも減少y'<0かつy''>0であれば,右下がり(↘)かつ接線の傾きは増加となります。

微分法の応用21 問題 増減表

±∞を目指して進むときの極限と漸近線

lecturer_avatar

増減表により,グラフの概形はほぼ把握できました。最後に,曲線の左側,右側,漸近線に近づくときの形を求めましょう。xが±∞を目指して進むときの極限を求めると,

微分法の応用21 問題 増減表の下の一行目のみ(増減表不要)

lecturer_avatar

y=x+(1/x)は,x=0を漸近線の1つとします。xが右側から0を目指して進むときの極限,左側から0を目指して進むときの極限を求めると,

微分法の応用21 問題 増減表の下の二行目のみ(増減表不要)

lecturer_avatar

さらに,y=x+(1/x)は,y=xを漸近線とすることがわかりますか? これは,f(x)=x+(1/x),g(x)=xとして,xが∞を目指すとき,
lim{f(x)-g(x)}
を求めるとわかります。
lim{f(x)-g(x)}
=lim{x+(1/x)-x}
=lim(1/x)
xが∞を目指すとき,lim{f(x)-g(x)}は0に限りなく近づきますね。つまり,xが∞を目指すとき,f(x)=x+(1/x)の値と,g(x)=xの値がほとんど同じになることを意味するのです。

微分法の応用21 問題 増減表の下の三行目のみ(増減表不要)

lecturer_avatar

よって,y=x+(1/x)は,x=∞を目指すとき,y=xに限りなく近づいていきます。同様に,x=-∞を目指すときも,y=xに限りなく近づいていきます。

lecturer_avatar

これらの情報からグラフをかくと,次のような答えになります。

答え
微分法の応用21 問題 答え

分数関数の漸近式の求め方

lecturer_avatar

分数関数のグラフの概形をかくコツをつかめましたか? 分数関数特有のポイントは,漸近線でした。分母が0になる値に加え,次の解法を覚えておくとよいでしょう。

POINT
微分法の応用21 ポイント
グラフのかき方(2)
119
友達にシェアしよう!
  • 学校で使っている教科書にあわせて勉強できる

      会員登録をクリックまたはタップすると、利用規約・プライバシーポリシーに同意したものとみなします。
      ご利用のメールサービスで @try-it.jp からのメールの受信を許可して下さい。詳しくは
      こちらをご覧ください。

      この授業のポイント・問題を確認しよう

      微分法の応用

          会員登録をクリックまたはタップすると、利用規約・プライバシーポリシーに同意したものとみなします。
          ご利用のメールサービスで @try-it.jp からのメールの受信を許可して下さい。詳しくは
          こちらをご覧ください。

          導関数の応用

              会員登録をクリックまたはタップすると、利用規約・プライバシーポリシーに同意したものとみなします。
              ご利用のメールサービスで @try-it.jp からのメールの受信を許可して下さい。詳しくは
              こちらをご覧ください。

              高校数学Ⅲ