高校数学Ⅲ

高校数学Ⅲ
5分で解ける!第2次導関数と極値に関する問題

9

5分で解ける!第2次導関数と極値に関する問題

9

子どもの勉強から大人の学び直しまで
ハイクオリティーな授業が見放題

カンタン登録1分

この動画の問題と解説

問題

一緒に解いてみよう

微分法の応用22 問題1

解説

これでわかる!
問題の解説授業
lecturer_avatar

f(x)=x3-3xの極値を求める問題です。数学Ⅱの「微分法・積分法」で学習した知識でも解ける問題です。数学Ⅱでは,f'(x)=0の解を求め,増減表を書いてf'(x)の符号変化を見て……と答えを出してきましたが,ここでは第二次導関数を使って極大値・極小値を判定しましょう。

POINT
微分法の応用22 ポイント
lecturer_avatar

「f'(α)=0かつf''(α)>0」ならば「f(α)は極小値」「f'(β)=0かつf''(β)<0」ならば「f(β)は極大値」 だと判定できます。

f'(x)=0の解を求める

微分法の応用22 問題1

lecturer_avatar

まずは,f'(x)=0の解を求めます。
f'(x)=3x2-3=3(x2-1)=0
より,
x=±1
とわかりました。ただし, x=±1 で極大値・極小値をとるかはまだわかりません。

f''(-1),f''(1)の符号を見る

lecturer_avatar

極大値・極小値を判定するために,f''(x)の符号を見ましょう。
f''(x)={3(x2-1)}'=6x

lecturer_avatar

x=-1のとき,
f''(-1) =6×(-1) <0
つまり,f(-1)で極大となり,その値は,
f(-1)=(-1)3-3×(-1)=2
です。

lecturer_avatar

x=1のとき,
f''(1) =6×1 >0
つまり,f(1)で極小となり,その値は,
f(1)=13-3×1=-2
です。

答え
微分法の応用22 問題1 答え
第2次導関数と極値
9
友達にシェアしよう!
  • 学校で使っている教科書にあわせて勉強できる

      会員登録をクリックまたはタップすると、利用規約・プライバシーポリシーに同意したものとみなします。
      ご利用のメールサービスで @try-it.jp からのメールの受信を許可して下さい。詳しくは
      こちらをご覧ください。

      この授業のポイント・問題を確認しよう

      微分法の応用

          会員登録をクリックまたはタップすると、利用規約・プライバシーポリシーに同意したものとみなします。
          ご利用のメールサービスで @try-it.jp からのメールの受信を許可して下さい。詳しくは
          こちらをご覧ください。

          導関数の応用

              会員登録をクリックまたはタップすると、利用規約・プライバシーポリシーに同意したものとみなします。
              ご利用のメールサービスで @try-it.jp からのメールの受信を許可して下さい。詳しくは
              こちらをご覧ください。

              高校数学Ⅲ