高校数学Ⅲ

高校数学Ⅲ
5分で解ける!関数f(x)の1次近似式に関する問題

8

5分で解ける!関数f(x)の1次近似式に関する問題

8

子どもの勉強から大人の学び直しまで
ハイクオリティーな授業が見放題

カンタン登録1分

この動画の問題と解説

問題

一緒に解いてみよう

微分法の応用29 問題1

解説

これでわかる!
問題の解説授業
lecturer_avatar

h≒0のとき,sin(a+h)の1次近似式を求める問題です。関数sinxにおける,x=aでの接線の方程式をイメージして,求めていきましょう。

微分法の応用29 ポイント

f(a+h)≒f'(a)h+f(a)

微分法の応用29 問題1

lecturer_avatar

sin(a+h)において,aは定数で,hは0に限りなく近い値です。h=0.001や,h=-0.001などをイメージするとよいでしょう。

lecturer_avatar

このとき,sin(a+h)をhの1次関数で表したものが1次近似式です。f(x)=sinxとおくと,接線の方程式をもとにして次のように立式できますね。
f(a+h)≒f'(a)h+f(a)
sin(a+h)≒f'(a)h+sina
あとは,f'(a)を求めましょう。

lecturer_avatar

f(x)=sinxより,f'(x)=cosxであり,
f'(a)=cosa
ですね。よって,
sin(a+h)≒hcosa+sina
と答えが求まります。

答え
微分法の応用29 問題1 答え
関数f(x)の1次近似式
8
友達にシェアしよう!
  • 学校で使っている教科書にあわせて勉強できる

      会員登録をクリックまたはタップすると、利用規約・プライバシーポリシーに同意したものとみなします。
      ご利用のメールサービスで @try-it.jp からのメールの受信を許可して下さい。詳しくは
      こちらをご覧ください。

      この授業のポイント・問題を確認しよう

      微分法の応用

          会員登録をクリックまたはタップすると、利用規約・プライバシーポリシーに同意したものとみなします。
          ご利用のメールサービスで @try-it.jp からのメールの受信を許可して下さい。詳しくは
          こちらをご覧ください。

          方程式・不等式への応用

              会員登録をクリックまたはタップすると、利用規約・プライバシーポリシーに同意したものとみなします。
              ご利用のメールサービスで @try-it.jp からのメールの受信を許可して下さい。詳しくは
              こちらをご覧ください。

              高校数学Ⅲ