高校数学Ⅲ
5分で解ける!f(ax+b)の不定積分(1)に関する問題
- ポイント
- 問題
- 問題
この動画の問題と解説
問題
一緒に解いてみよう
解説
これでわかる!
問題の解説授業
展開して積分……は計算が面倒
t=3x+1とおく
1次関数ax+bを組み込んだ合成関数の積分は,t=ax+bとおくのがポイントです。この問題では,t=3x+1とおきましょう。すると,
∫(3x+1)4dx= ∫t4dx
と式変形できます。
dxをdtで表すと……
∫t4dx は,t4をxで不定積分するという意味です。t4をtで積分するには,dxをdtに書き換える必要がありますね。いま,t=3x+1より,両辺をxで微分して,
(d/dx)t=3
つまり,dx=(1/3)dtとなるわけです。これを ∫t4dx に代入して,
∫t4dx=(1/3)∫t4dt
tで積分できる式に変形できましたね。
t4を積分した後,xに戻す
t4の積分は(1/5)t5です。積分定数Cをつけて,
(1/3)∫t4dt=(1/15)t5+C
となりますね。ここで,tをxの式に戻すことを忘れないでください。tはあくまで積分しやすいように置きかえた文字なので,問題で与えられた文字xに戻す必要があります。
(3x+1)4を不定積分する問題です。(3x+1)4を展開しても積分できますが,計算が面倒ですよね。この問題は,(3x+1)4を合成関数と見ましょう。f(x)=x4の中に,1次関数3x+1を組み込んだ合成関数と見ると,次の解法が使えますね。