高校数学Ⅲ
5分で解ける!f(ax+b)の不定積分(1)に関する問題
- ポイント
- 問題
- 問題
この動画の問題と解説
問題
一緒に解いてみよう
解説
これでわかる!
問題の解説授業
t=2x+3とおく
1次関数ax+bを組み込んだ合成関数の積分は,t=ax+bとおくのがポイントです。この問題では,t=2x+3とおきましょう。すると,
∫√(2x+3)dx=∫√(t)dx= ∫t(1/2)dx
と式変形できます。
dxをdtで表すと……
∫t(1/2)dx は,t(1/2)をxで不定積分するという意味です。t(1/2)をtで積分するには,dxをdtに書き換える必要がありますね。いま,t=2x+3より,両辺をxで微分して,
(d/dx)t=2
つまり,dx=(1/2)dtとなるわけです。これを ∫t(1/2)dx に代入して,
∫t(1/2)dx=(1/2)∫t(1/2)dt
tで積分できる式に変形できましたね。
t(1/2)を積分した後,xに戻す
t(1/2)の積分は(2/3)t(3/2)です。積分定数Cをつけて,
(1/2)∫t(1/2)dt=(1/3)t(3/2)+C
となりますね。ここで,tをxの式に戻すことを忘れないでください。tはあくまで積分しやすいように置きかえた文字なので,問題で与えられた文字xに戻す必要があります。
√(2x+3)を不定積分する問題です。√(2x+3)は合成関数ですね。f(x)=√xの中に,1次関数2x+3を組み込んだ合成関数と見ると,次の解法が使えますね。