高校数学Ⅲ

高校数学Ⅲ
5分で解ける!関数の極値(3)に関する問題

36

5分で解ける!関数の極値(3)に関する問題

36
トライ式高等学院通信制高校トライ式高等学院通信制高校

この動画の問題と解説

問題

一緒に解いてみよう
関数の極値(3)

微分法の応用10 問題

解説

これでわかる!
問題の解説授業
lecturer_avatar

f(x)=x+(4/x)の極値を求める問題です。関数の極値は,次の3つの手順にしたがって求めます。

極値の求め方

① f'(x)を計算する

② f'(x)=0を解く

③ 増減表を書く

lecturer_avatar

手順③の増減表では,f'(x)の符号が変わる分岐点を意識しましょう。 f'(x)=0の式のうち,「符号を決定する式」 を発見しておくとスピーディーに増減表が書けます。また,今回のように 分数関数 を扱うときは,分母が0になるときのxの値に注意してください。f(x)=x+(4/x) は,分母が0になるx=0の値はとれません。分母が0になるところで,グラフは途切れるのです。

POINT
微分法の応用10 ポイント
lecturer_avatar

このポイントをおさえたうえで,実際に問題を解いていきましょう。

f'(x)=0となるxの値をチェック

微分法の応用10 問題

lecturer_avatar

まずは, ①導関数f'(x)を計算 しましょう。
f'(x)=(x)'+(4x-1)'=1-4x-2=(x2-4)/x2
このとき x≠0 です。

lecturer_avatar

次に, ②f'(x)=0を解きます
f'(x)=(x2-4)/x2より,
f'(x)=0のとき,x2-4=0
つまり,
x=±2 とわかりますね。

微分法の応用10 問題 答え1~6行目

f'(x)の符号から増減表を作成

lecturer_avatar

③増減表 を書きましょう。一番上の段には,xの値を書きます。f'(x)=0となる x=±2 に加え,分母が0となるxの値0を書き込んでおきます。

微分法の応用10 問題 増減表のうち,一番左の列と一番上の行のみうめる あとは空欄

lecturer_avatar

真ん中の段には,f'(x)の符号を書きます。f'(x)=(x2-4)/x2において,分母は正の値なので, (x2-4) がf'(x)の符号を決めます。それぞれの範囲の符号を調べると,

微分法の応用10 問題 増減表のうち,一番左の列と一番上の行,真ん中の行をうめる あとは空欄

lecturer_avatar

x≠0となるので,x=0のときのf'(x),f(x)は値がないことに注意してください。一番下の段には,f(x)の増減を書き入れましょう。f'(x)>0ならば増加(↗),f'(x)<0ならば減少(↘)ですね。

微分法の応用10 問題 増減表

x=-2のときに極大値,x=2のときに極小値

lecturer_avatar

今回はf(x)の極値を調べるのが目的です。増減表におけるf'(x)の符号変化を見ることで,極値がわかります。

微分法の応用10 問題 増減表

lecturer_avatar

f'(x) は,x=-2 を分岐点として,符号が正から負に変わっています。グラフが↗から↘になるので 極大値f(-2) をとることがわかります。また, f'(x) は,x=2 を分岐点として,符号が負から正に変わっています。グラフが↘から↗になるので 極小値f(2) をとることがわかります。また,x=0のときのf(x)の値はなく,グラフは途中でちぎれることになります。

lecturer_avatar

あとは,x=-2,2を,f(x)=x+(4/x)に代入すれば答えが出てきますね。

答え
微分法の応用10 問題 答え
トライ式高等学院通信制高校
関数の極値(3)
36
友達にシェアしよう!
トライ式高等学院通信制高校